Medial lemniscal and spinal projections to the macaque thalamus: an electron microscopic study of differing GABAergic circuitry serving thalamic somatosensory mechanisms.
نویسندگان
چکیده
The synaptic relationships formed by medial lemniscal (ML) or spinothalamic tract (STT) axon terminals with neurons of the somatosensory ventroposterolateral thalamic nucleus of the macaque monkey have been examined quantitatively by electron microscopy. ML and STT axons were labeled by the anterograde axon transport of WGA-HRP following injection of the tracer into the contralateral dorsal column nuclei, or the dorsal horn of the spinal cord, respectively. Thalamic tissue was histochemically reacted for the presence of HRP. Serial thin sections were stained with a gold-labeled antibody to GABA, to determine which neuronal elements exhibited GABA immunoreactivity (GABA-ir). Serially sectioned thalamic structures were recorded in electron micrographs and reconstructed in three dimensions by computer. Individual ML axon terminals form multiple synaptic contacts with segments of the proximal dendritic trees of thalamocortical relay neurons and also synapse upon the dendritic appendages of GABA-ir interneurons (local circuit neurons). These GABA-ir dendritic appendages contain synaptic vesicles and are presynaptic (presynaptic dendrites) to the same segments of relay neuron dendrites that receive ML contacts. When analyzed in serial sections and reconstructed by computer, the ML terminals form triadic relationships (ML, GABA appendage, and relay neuron dendrite) or more complex glomerular arrangements involving multiple appendages, all of which then contact the relay neuron dendritic segment. In contrast, multiple STT terminals make synaptic contacts along segments of projection neuron dendrites and are usually the only type of profile to contact that segment of dendrite. More than 85% of the spinal afferents form simple axodendritic synapses with relay cells and do not contact GABA-ir appendages. The thalamic synaptic relationships of ML terminals are fundamentally different from those formed by the STT. Because STT neurons predominatly transmit information about noxious stimuli, the simple axodendritic circuitry of the majority of these spinal afferents suggests that the transmission of noxious information is probably not subject to GABAergic modulation by thalamic interneurons, in contrast to the GABAergic processing of non-noxious information carried by the ML afferents. The differences in the GABAergic circuits of the thalamus that mediate ML and STT afferent information are believed to underlie differential somatosensory processing in the forebrain. We suggest that changes in thalamic GABAergic dendritic appendages and GABA receptors following CNS injury may play a role in the genesis of some central pain states.
منابع مشابه
Morphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L
Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...
متن کاملFormation of whisker-related principal sensory nucleus-based lemniscal pathway requires a paired homeodomain transcription factor, Drg11.
Little is known about the molecular mechanisms underlying the formation of the principal sensory nucleus (PrV) of the trigeminal nerve, a major relay station for somatotopic pattern formation in the trigeminal system. Here, we show that mice lacking Drg11, a homeodomain transcription factor, exhibit defects within the PrV, which include an aberrant distribution of Drg11-/- cells, altered expres...
متن کاملInterdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex
Primary sensory cortical areas receive information through multiple thalamic channels. In the rodent whisker system, lemniscal and paralemniscal thalamocortical projections, from the ventral posteromedial nucleus (VPM) and posterior medial nucleus (POm) respectively, carry distinct types of sensory information to cortex. Little is known about how these separate streams of activity are parsed an...
متن کاملMonosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex.
Monosynaptic interlaminar connections between spiny stellate cells in layer 4 (L4), the main cortical recipient layer for thalamic projections, and pyramidal cells in layer 5A (L5A), one of the main cortical output layers, were examined anatomically and functionally by paired recordings in acute brain slices. The somata of pairs forming interlaminar L4-to-L5A connections were located predominan...
متن کاملProperties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse.
Primary somatosensory cortex (S1) receives two distinct classes of thalamocortical input via the lemniscal and paralemniscal pathways, the former via ventral posterior medial nucleus (VPM), and the latter, from the posterior medial nucleus (POm). These projections have been described as parallel thalamocortical pathways. Although the VPM thalamocortical projection has been studied in depth, sev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 5 Pt 1 شماره
صفحات -
تاریخ انتشار 1994